Abstract

ABSTRACT In clinical studies that utilize real-world data, time-to-event outcomes are often germane to scientific questions of interest. Two main obstacles are the presence of non-proportional hazards and confounding bias. Existing methods that could adjust for NPH or confounding bias, but no previous work delineated the complexity of simultaneous adjustments for both. In this paper, a propensity score stratified MaxCombo and weighted Cox model is proposed. This model can adjust for confounding bias and NPH and can be pre-specified when NPH pattern is unknown in advance. The method has robust performance as demonstrated in simulation studies and in a case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.