Abstract

Advances in technology have made different microarray platforms available. Among the many, Illumina BeadArrays are relatively new and have captured significant market share. With BeadArray technology, high data quality is generated from low sample input at reduced cost. However, the analysis methods for Illumina BeadArrays are far behind those for Affymetrix oligonucleotide arrays, and so need to be improved. In this article, we consider the problem of background correction for BeadArray data. One distinct feature of BeadArrays is that for each array, the noise is controlled by over 1000 bead types conjugated with non-specific oligonucleotide sequences. We extend the robust multi-array analysis (RMA) background correction model to incorporate the information from negative control beads, and consider three commonly used approaches for parameter estimation, namely, non-parametric, maximum likelihood estimation (MLE) and Bayesian estimation. The proposed approaches, as well as the existing background correction methods, are compared through simulation studies and a data example. We find that the maximum likelihood and Bayes methods seem to be the most promising. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.