Abstract
Cardiovascular events, such as hospitalizations because of congestive heart failure, often occur repeatedly in patients with CKD. Many studies focus on analyses of the first occurrence of these events, and discard subsequent information. In this article, we review a number of statistical methods for analyzing ordered recurrent events of the same type, including Poisson regression and three commonly used survival models that are extensions of Cox proportional hazards regression. We illustrate the models by analyzing data from the Chronic Renal Insufficiency Cohort Study to identify risk factors for congestive heart failure hospitalizations in patients with CKD. We show that recurrent event analyses provide additional insights about the data compared with a standard survival analysis of time to the first event.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical Journal of the American Society of Nephrology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.