Abstract

Evaluating the performance of a binary diagnostic test, including artificial intelligence classification algorithms, involves measuring sensitivity, specificity, positive predictive value, and negative predictive value. Particularly when comparing the performance of two diagnostic tests applied on the same set of patients, these metrics are crucial for identifying the more accurate test. However, comparing predictive values presents statistical challenges because their denominators depend on the test outcomes, unlike the comparison of sensitivities and specificities. This paper reviews existing methods for comparing predictive values and proposes using the permutation test. The permutation test is an intuitive, non-parametric method suitable for datasets with small sample sizes. We demonstrate each method using a dataset from MRI and combined modality of mammography and ultrasound in diagnosing breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.