Abstract

BackgroundHuman cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention.ResultsWe propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC) database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors.ConclusionsOur proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

Highlights

  • Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells

  • Data Description Data used in this study are from COSMIC (Catalog of Somatic Mutations in Cancer) database version 40 (Forbes et al (2008) [20]) via http://www.sanger.ac.uk/cosmic

  • To ensure compatibility with the test assumption that the location of amino acid mutations on a protein follows a uniform distribution, we limit our analysis to studies annotated as whole gene screens in COSMIC; this eliminated a great majority of COSMIC studies annotated as partial or with missing information on the full-gene screen status

Read more

Summary

Introduction

Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. While several approaches have been developed to separate driver mutations from passengers, few approaches can identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention. Cancer is a genetic disease caused by the accumulation of tumor-specific (somatic) mutations in two broadly defined types of genes called tumor suppressors and oncogenes (Vogelstein and Kinzler (2004) [1]). There is significant interest in identifying those mutations necessary for the cancer phenotype ( known as driver mutations), separating the driver mutations from the random (passenger) mutations that occur as a consequence of the genetic instability typical for human tumors (Cahill et al (1999) [3]), and distinguishing activating mutations from inactivating mutations

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.