Abstract

The fundamental problem of statistical mechanics is obtaining an ensemble average of physical quantities that are described by phase functions (classical physics) or operators (quantum physics). In classical statistical mechanics the ensemble density of distribution is defined in the phase space of the system. In quantum statistical mechanics the space of functions that describe microscopic states of the system play a role similar to the classical phase space. The probability density of the system detection in the phase space must be normalized. It depends on external parameters that determine the macroscopic state of the system. An in-depth study of the statistical mechanics foundations was presented in the works of A.Y. Khinchin (Khinchin, 1949, 1960). For classical statistical mechanics an invariant set was introduced. It would be mapped into itself by transforming with the Hamilton equations. The phase point of the isolated system remains during the process of the motion at the invariant set at all times. If the system is in the stationary equilibrium state, this invariant set has a finite measure. The Ergodic hypothesis asserts that in this case the probability   dP R

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.