Abstract

We study analytically the equilibrium properties of the spherical hierarchical model in the presence of random fields. The expression for the critical line separating a paramagnetic from a ferromagnetic phase is derived. The critical exponents characterising this phase transition are computed analytically and compared with those of the corresponding D-dimensional short-range model, leading to conclude that the usual mapping between one dimensional long-range models and D-dimensional short-range models holds exactly for this system, in contrast to models with Ising spins. Moreover, the critical exponents of the pure model and those of the random field model satisfy a relationship that mimics the dimensional reduction rule. The absence of a spin-glass phase is strongly supported by the local stability analysis of the replica symmetric saddle-point as well as by an independent computation of the free-energy using a renormalization-like approach. This latter result enlarges the class of random field models for which the spin-glass phase has been recently ruled out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call