Abstract
We study the statistical mechanical aspects of stochastic analog neural network models for associative memory with correlation type learning. We take three approaches to derive the set of the order parameter equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis (SCSNA), the Thouless-Anderson-Palmer (TAP) equation, and the replica symmetric calculation. On the basis of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expressions for the local fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.