Abstract

The statistical mechanics of systems whose evolution is governed by mixed quantum-classical dynamics is investigated. The algebraic properties of the quantum-classical time evolution of operators and of the density matrix are examined and compared to those of full quantum mechanics. The equilibrium density matrix that appears in this formulation is stationary under the dynamics and a method for its calculation is presented. The response of a quantum-classical system to an external force which is applied from the distant past when the system is in equilibrium is determined. The structure of the resulting equilibrium time correlation function is examined and the quantum-classical limits of equivalent quantum time correlation functions are derived. The results provide a framework for the computation of equilibrium time correlation functions for mixed quantum-classical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call