Abstract
A statistical mechanics framework of fuzzy random polymer networks is established based on the theories of fuzzy systems. The entanglement effect is manifested quantitatively by introducing an entanglement tensor and membership function and the amorphous structure is treated as the fuzzy random network made up of macromolecular coils entangled randomly. A random tetrahedral entangled-crosslinked cell is chosen as an average representative unit of the fuzzy random polymer network structure. By making use of the theory of fuzzy probability and statistical mechanics, the expression for the free energy of deformation is given, which fits well with the experimental data on rubber elasticity under various deformation modes. Both classical statistical theory and Mooney-Rivlin equation can be taken as its special cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Science in China Series A-Mathematics, Physics, Astronomy & Technological Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.