Abstract
The recent striking success of deep neural networks in machine learning raises profound questions about the theoretical principles underlying their success. For example, what can such deep networks compute? How can we train them? How does information propagate through them? Why can they generalize? And how can we teach them to imagine? We review recent work in which methods of physical analysis rooted in statistical mechanics have begun to provide conceptual insights into these questions. These insights yield connections between deep learning and diverse physical and mathematical topics, including random landscapes, spin glasses, jamming, dynamical phase transitions, chaos, Riemannian geometry, random matrix theory, free probability, and nonequilibrium statistical mechanics. Indeed, the fields of statistical mechanics and machine learning have long enjoyed a rich history of strongly coupled interactions, and recent advances at the intersection of statistical mechanics and deep learning suggest these interactions will only deepen going forward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.