Abstract

We use statistical mechanical techniques to model the adaptive immune system, represented by lymphocyte networks in which B cells interact with T cells and antigen. We assume that B- and T-clones evolve in different thermal noise environments and on different timescales, and derive stationary distributions and study expansion of B clones for the case where these timescales are adiabatically separated. We compute characteristics of B-clone sizes, such as average concentrations, in parameter regimes where T-clone sizes are modelled as binary variables. This analysis is independent of the network topology, and its results are qualitatively consistent with experimental observations. To obtain the full distributions of B-clone sizes we assume further that the network topologies are random and locally equivalent to trees. This allows us to compete these distributions via the Bethe–Peierls approach. As an example we calculate B-clone distributions for immune models defined on random regular networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call