Abstract

AbstractCell decision-making is the cellular process of responding to microenvironmental cues. This can be regarded as the regulation of cell’s intrinsic variables to extrinsic stimuli. Currently, little is known about the principles dictating cell decision-making. Regarding cells as Bayesian decision-makers under energetic constraints, I postulate the principle of least microenvironmental uncertainty principle (LEUP). This is translated into a free-energy principle and I develop a statistical mechanics theory for cell decision-making. I exhibit the potential of LEUP in the case of cell migration. In particular, I calculate the dependence of cell locomotion force on the steady state distribution of adhesion receptors. Finally, the associated migration velocity allows for the reproduction of the cell anomalous diffusion, as observed in cell culture experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.