Abstract

We propose a statistical mechanics approach to a coevolving spin system with an adaptive network of interactions. The dynamics of node states and network connections is driven by both spin configuration and network topology. We consider a Hamiltonian that merges the classical Ising model and the statistical theory of correlated random networks. As a result, we obtain rich phase diagrams with different phase transitions both in the state of nodes and in the graph topology. We argue that the coupling between the spin dynamics and the structure of the network is crucial in understanding the complex behavior of real-world systems and omitting one of the approaches renders the description incomplete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.