Abstract

The emerging popular scheme of fourth generation wireless communication, orthogonal frequency-division multiplexing, is mapped onto a variant of a random field Ising Hamiltonian and results in an efficient physical intercarrier interference (ICI) cancellation decoding scheme. This scheme is based on Monte Carlo (MC) dynamics at zero temperature as well as at the Nishimori temperature and demonstrates improved bit error rate (BER) and robust convergence time compared to the state of the art ICI cancellation decoding scheme. An optimal BER performance is achieved with MC dynamics at the Nishimori temperature but with a substantial computational cost overhead. The suggested ICI cancellation scheme also supports the transmission of biased signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.