Abstract

Considerable effort has been given for some years to developing models of interatomic forces aimed at accounting for bond directionality in liquid and amorphous state calculations. Models involving three-body potentials have been especially useful for computer simulation studies of liquid and amorphous states in elemental semiconductors and binary chalcogenides of group-IV elements, starting with the work of Stillinger and Weber on silicon. However, pair potential models that may still account for the main effects of angular dependences of the effective interatomic forces, though at a primitive level, are desirable from the viewpoint of liquid structure theory. Developments in this direction are briefly reviewed, with particular emphasis on bond particle models for the structure of liquid and amorphous germanium. We also discuss the relation between liquid structure in a bond-particle model and crystallization accompanied by electron localization and volume expansion, as observed in elemental and III-V polar semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call