Abstract

Crystallography employing conventional large-volume diffraction has enabled the firm connections between structure and properties and structure and function that have solved many of the most difficult problems in materials science and biology. Disordered materials possess a large variety of local structural arrangements and pose a special challenge for crystallography. Often the local structures and symmetries that are responsible for observed phenomena in structurally complex disordered materials cannot be distinguished from conventional diffraction alone. In this article, we review analytical approaches for understanding local structure and symmetry from angular correlations in limited-volume diffraction patterns of amorphous materials, with a special focus on electron nano-diffraction. We discuss how these angular correlations can be interpreted in the context of dense, disordered, three-dimensional materials probed in a projection geometry and highlight the experimental challenges and considerations. New developments in this field are described whereby these angular correlations are statistically analyzed to probe the symmetry and variety of local structures, transformed to a real-space function that contains the 2-, 3- and 4-body particle correlations, and employed to develop reverse Monte Carlo models with more realistic higher-order correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.