Abstract
It is well-known that a contrast function defined on a product manifold \(M \times M\) induces a Riemannian metric and a pair of dual torsion-free affine connections on the manifold M. This geometrical structure is called a statistical manifold and plays a central role in information geometry. Recently, the notion of pre-contrast function has been introduced and shown to induce a similar differential geometrical structure on M, but one of the two dual affine connections is not necessarily torsion-free. This structure is called a statistical manifold admitting torsion. This paper summarizes such previous results including the fact that an estimating function on a parametric statistical model naturally defines a pre-contrast function to induce a statistical manifold admitting torsion and provides some new insights on this geometrical structure. That is, we show that the canonical pre-contrast function can be defined on a partially flat space, which is a flat manifold with respect to only one of the dual connections, and discuss a generalized projection theorem in terms of the canonical pre-contrast function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.