Abstract
In dynamical systems theory, a standard method for passing from discrete time to continuous time is to construct the suspension flow under a roof function. In this paper, we give conditions under which statistical laws, such as the central limit theorem and almost sure invariance principle, for the underlying discrete time system are inherited by the suspension flow. As a consequence, we give a simpler proof of the results of Ratner (1973) and recover the results of Denker and Philipp (1984) for Axiom A flows. Morcover, we obtain several new results for nonuniformly and partially hyperbolic flows, including frame flows on negatively curved manifolds satisfying a pinching condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.