Abstract
Statistical learning theory is regarded as one of the most beautifully developed branches of artificial intelligence. It provides the theoretical basis for many of today's machine learning algorithms. The theory helps to explore what permits to draw valid conclusions from empirical data. This chapter provides an overview of the key ideas and insights of statistical learning theory. The statistical learning theory begins with a class of hypotheses and uses empirical data to select one hypothesis from the class. If the data generating mechanism is benign, then it is observed that the difference between the training error and test error of a hypothesis from the class is small. The statistical learning theory generally avoids metaphysical statements about aspects of the true underlying dependency, and thus is precise by referring to the difference between training and test error. The chapter also describes some other variants of machine learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.