Abstract

Observers can learn locations where salient distractors appear frequently to reduce potential interference-an effect attributed to better suppression of distractors at frequent locations. But how distractor suppression is implemented in the visual cortex and within the frontoparietal attention networks remains unclear. We used fMRI and a regional distractor-location learning paradigm with two types of distractors defined in either the same (orientation) or a different (color) dimension to the target to investigate this issue. fMRI results showed that BOLD signals in early visual cortex were significantly reduced for distractors (as well as targets) occurring at the frequent versus rare locations, mirroring behavioral patterns. This reduction was more robust with same-dimension distractors. Crucially, behavioral interference was correlated with distractor-evoked visual activity only for same- (but not different-) dimension distractors. Moreover, with different- (but not same-) dimension distractors, a color-processing area within the fusiform gyrus was activated more when a distractor was present in the rare region versus being absent and more with a distractor in the rare versus frequent locations. These results support statistical learning of frequent distractor locations involving regional suppression in early visual cortex and point to differential neural mechanisms of distractor handling with different- versus same-dimension distractors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call