Abstract
ABSTRACT Torsades de pointes (TdP) is an irregular heart rhythm characterized by faster beat rates and potentially could lead to sudden cardiac death. Much effort has been invested in understanding the drug-induced TdP in preclinical studies. However, a comprehensive statistical learning framework that can accurately predict the drug-induced TdP risk from preclinical data is still lacking. We proposed ordinal logistic regression and ordinal random forest models to predict low-, intermediate-, and high-risk drugs based on datasets generated from two experimental protocols. Leave-one-drug-out cross-validation, stratified bootstrap, and permutation predictor importance were applied to estimate and interpret the model performance under uncertainty. The potential outlier drugs identified by our models are consistent with their descriptions in the literature. Our method is accurate, interpretable, and thus useable as supplemental evidence in the drug safety assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.