Abstract
Longitudinally collected outcomes are increasingly common in cell biology and gene therapy research. In this article, we review the current practice of statistical analysis of longitudinal data in these fields, and recommend the "best performing" statistical method among those available in most statistical packages. A survey of papers published in Molecular Therapy indicates that longitudinal data are only properly analyzed in a small fraction of articles, and the most popular approach was analyzing each measurement time point data separately using an analysis of variance (ANOVA) model with Tukey's post hoc tests. We show that first, such cross-sectional ANOVA approach does not utilize all the power that the longitudinal design of a study provides, and second, Tukey's post hoc tests applied at each measurement time separately could result in a false positivity rate as high as 30% using a simulation study. We recommend mixed effects model analysis instead. We also discuss the complexities of multiple comparison adjustment in the post hoc testing that result from within experimental unit correlation existing in longitudinal data. We recommend resampling as a method that readily adjusts the post hoc testing to be limited to only interesting comparisons and thereby avoids unduly sacrificing the power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.