Abstract

Standard microarchitectural analysis of bone using micro-computed tomography produces a large number of parameters that quantify the structure of the trabecular network. Analyses that perform statistical tests on many parameters are at elevated risk of making Type I errors. However, when multiple testing correction procedures are applied, the risk of Type II errors is elevated if the parameters being tested are strongly correlated. In this article, we argue that four commonly used trabecular microarchitectural parameters (thickness, separation, number, and bone volume fraction) are interdependent and describe only two independent properties of the trabecular network. We first derive theoretical relationships between the parameters based on their geometric definitions. Then, we analyze these relationships with an aggregated in vivo dataset with 2987 images from 1434 participants and a synthetically generated dataset with 144 images using principal component analysis (PCA) and linear regression analysis. With PCA, when trabecular thickness, separation, number, and bone volume fraction are combined, we find that 92 % to 97 % of the total variance in the data is explained by the first two principal components. With linear regressions, we find high coefficients of determination (0.827–0.994) and fitted coefficients within expected ranges. These findings suggest that to maximize statistical power in future studies, only two of trabecular thickness, separation, number and bone volume fraction should be used for statistical testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call