Abstract
Swift performance assessment of dehumidification systems, in design stage and while operation of the system is of substantial importance for commercialization and wide implementation of this technology. This paper presents a novel statistical model, employing Gaussian Process Regression (GPR) to investigate performance of a solar/waste energy driven dehumidification/regeneration cycle with a solid adsorbent bed. The statistical model takes thousands of operating conditions derived from a numerical model to predict the performance of the system. This predictive tool directly correlates the main operating parameters with the performance parameters of the system. The operating parameters considered in this study are: temperature, relative humidity and flow rate of process air, temperature of regeneration air, length of the desiccant bed, solar radiation intensity and operating time, and the selected performance parameters are: moisture extraction efficiency for the dehumidification cycle and moisture removal efficiency for the regeneration cycle. The model is evaluated by three metrics, namely: root mean square error (RSME), mean absolute percentage error (MAPE), and coefficient of determination (R2). The maximum RSME and MAPE for moisture extraction are only 0.045, 0.21%, and for moisture removal efficiencies are 0.082 and 0.39%, respectively, while the R2 value is derived as 0.97. The developed model is used to investigate the impact of four selected operating parameters on system performance. Additionally, the system performance is predicted for randomly generated operating conditions as well as warm and humid climates. The developed GPR model provides a swift and highly accurate predictive tool for design of the dehumidification systems and for commercialization of the investigated dehumidification systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.