Abstract

Habitat use is often examined at a species or population level, but patterns likely differ within a species, as a function of the sex, breeding colony, and current breeding status of individuals. Hence, within-species differences should be considered in habitat models when analyzing and predicting species distributions, such as predicted responses to expected climate change scenarios. Also, species' distribution data obtained by different methods (vessel-survey and individual tracking) are often analyzed separately rather than integrated to improve predictions. Here, we eventually fit generalized additive models for Streaked Shearwaters Calonectris leuconelas using tracking data from two different breeding colonies in the Northwestern Pacific and visual observer data collected during a research cruise off the coast of western Japan. The tracking-based models showed differences among patterns of relative density distribution as a function of life history category (colony, sex, and breeding conditions). The integrated tracking-based and vessel-based bird count model incorporated ecological states rather than predicting a single surface for the entire species. This study highlights both the importance of including ecological and life history data and integrating multiple data types (tag-based tracking and vessel count) when examining species-environment relationships, ultimately advancing the capabilities of species distribution models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call