Abstract
ABSTRACTThe sequential parallel comparison designhas recently been considered to solve the problem with high placebo response and the required sample size in the psychiatric clinical trials. One feature with this design is that a difference between the placebo group and the drug group may also arise in the variance–covariance structure of the clinical outcome. Provided the heterogeneity of the second moment, the treatment effect estimation at the second stage can be biased for the entire randomized patient population that includes patient responders. Our work presented here aims at how the coverage probability of the interval estimation of treatment effect performs under the unstructured variance–covariance matrix. The interaction between the truncation after the first stage and the heterogeneity of the second moment causes a substantial coverage probability problem. The type I error probability may not be controlled under the weak null due to this bias. This bias can also cause spurious power evaluation under an alternative hypothesis. The coverage probability of the ordinary least square statistic is shown in different scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.