Abstract

ABSTRACT Marshall–Olkin bivariate exponential distribution is used to statistically infer the adaptive type II progressive hybrid censored data under dependent competition risk model. For complex censored data with only partial failure reasons observed, maximum likelihood estimation and approximate confidence interval based on Fisher information are established. At the same time, Bayesian estimation is performed under the highly flexible Gamma–Dirichlet prior distribution and the highest posterior density interval using Gibbs sampling and Metropolis–Hastings algorithm is obtained. Then the performance of two methods is compared through several indexes. In addition, the Monte Carlo method is used for data simulation of multiple sets of variables to give experimental suggestions. Finally, a practical example is given to illustrate the operability and applicability of the proposed algorithm to efficiently carry out reliability test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.