Abstract
Censoring commonly occurs in real-world scenarios, either intentionally or unintentionally. Unintentional (or accidental) censoring usually happens randomly, i.e., it is out of the experimenters’ control, such as broken equipment, lack of follow-up, etc. Experimenters typically use intentional censoring to save experimental time and cost. In this article, we develop frequentist and Bayesian statistical inferential procedures for the parameters and reliability characteristics of the Burr type XII lifetime model under the Koziol-Green model based on progressive randomly censored data. For the frequentist approach, maximum likelihood methods for point and interval estimation are developed. For the Bayesian approach, the Bayes estimates under the squared error loss function (SELF) are evaluated using the Markov Chain Monte Carlo (MCMC) and Tierney-Kadane (T-K) approximation techniques. A Monte Carlo simulation study is used to assess the performance of the proposed estimation procedures. A real data analysis is performed to illustrate the proposed methods. Moreover, obtaining progressive censoring schemes for experimental planning purposes is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.