Abstract

SummaryMax-stable processes have proved to be useful for the statistical modelling of spatial extremes. Several families of max-stable random fields have been proposed in the literature. One such representation is based on a limit of normalized and rescaled pointwise maxima of stationary Gaussian processes that was first introduced by Kabluchko and co-workers. This paper deals with statistical inference for max-stable space–time processes that are defined in an analogous fashion. We describe pairwise likelihood estimation, where the pairwise density of the process is used to estimate the model parameters. For regular grid observations we prove strong consistency and asymptotic normality of the parameter estimates as the joint number of spatial locations and time points tends to ∞. Furthermore, we discuss extensions to irregularly spaced locations. A simulation study shows that the method proposed works well for these models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.