Abstract
The method of least absolute deviation provides a robust alternative to least squares, particularly when the data follow distributions that are non-normal and subject to outliers. While inference in least squares estimation is well understood, inferential procedures in the situation of least absolute deviation estimation have not been studied as extensively, particularly in the presence of autocorrelation. In this search, we study two alternative significance test procedures in least absolute deviation regression, along with two approaches used to correct for serial correlation. The study is based on a Monte Carlo simulation, and comparisons are made based on observed significance levels.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.