Abstract
This article develops a unified statistical inference framework for high-dimensional binary generalized linear models (GLMs) with general link functions. Both unknown and known design distribution settings are considered. A two-step weighted bias-correction method is proposed for constructing confidence intervals (CIs) and simultaneous hypothesis tests for individual components of the regression vector. Minimax lower bound for the expected length is established and the proposed CIs are shown to be rate-optimal up to a logarithmic factor. The numerical performance of the proposed procedure is demonstrated through simulation studies and an analysis of a single cell RNA-seq dataset, which yields interesting biological insights that integrate well into the current literature on the cellular immune response mechanisms as characterized by single-cell transcriptomics. The theoretical analysis provides important insights on the adaptivity of optimal CIs with respect to the sparsity of the regression vector. New lower bound techniques are introduced and they can be of independent interest to solve other inference problems in high-dimensional binary GLMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.