Abstract
In spite of widespread use of generalized additive models (GAMs) to remedy the “curse of dimensionality”, there is no well-grounded methodology developed for simultaneous inference and variable selection for GAM in existing literature. However, both are essential in enhancing the capability of statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a type of Bayesian information criterion (BIC) through the spline-backfitted kernel smoothing techniques proposed in recent articles. To characterize the global features of each non-parametric components, SCCs are constructed for testing their overall trends and entire shapes. By extending the BIC in additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is built up in GAM to improve the parsimony of model without loss of prediction accuracy. Simulations and a real example corroborate the above findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.