Abstract

In this paper, we study asymptotic properties of the maximum likelihood estimator (MLE) for the speed of a stochastic wave equation. We follow a well-known spectral approach to write the solution as a Fourier series, then we project the solution to a N-finite dimensional space and find the estimator as a function of the time and N. We then show consistency of the MLE using classical stochastic analysis. Afterward, we prove the asymptotic normality using the Malliavin–Stein method. We also study asymptotic properties of a discretized version of the MLE for the parameter. We provide this asymptotic analysis of the proposed estimator as the number of Fourier modes, N, used in the estimation and the observation time go to infinity. Finally, we illustrate the theoretical results with some numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.