Abstract
In this paper we explore the idea that Teichmuller space is hyperbolic “on average.” Our approach focuses on studying the geometry of geodesics which spend a definite proportion of time in some thick part of Teichmuller space. We consider several different measures on Teichmuller space and find that this behavior for geodesics is indeed typical. With respect to each of these measures, we show that the average distance between points in a ball of radius r is asymptotic to 2r, which is as large as possible. Our techniques also lead to a statement quantifying the expected thinness of random triangles in Teichmuller space, showing that “most triangles are mostly thin.”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.