Abstract
Studies of the size and morphology of anatomical structures rely on accurate and reproducible delineation of the structures, obtained either by human raters or automatic segmentation algorithms. Measures of reproducibility and variability are vital aspects of such studies and are usually acquired using repeated scans and repeated delineations (in the case of human raters). Methods exist for simultaneously estimating the true structure and rater performance parameters from multiple segmentations and have been demonstrated on volumetric images. In this work, we extend the application of previous methods onto two-dimensional surfaces parameterized as triangle meshes. Label homogeneity is enforced using a Markov random field formulated with an energy that addresses the challenges introduced by the surface parameterization. The method was explored using both simulated raters and surface labels obtained from an atlas registration. Simulated raters are computed using a global error as well as a novel and more realistic boundary error model. We study the impact of raters and their accuracy based on both models, and show how effectively this method estimates the true segmentation on simulated and real surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.