Abstract

We consider performance optimization in the uplink of a multiuser multiantenna communication system. Each user multiplexes data onto several independently encoded data streams, which are spatially precoded and conveyed over a fading narrowband multiple-input multiple-output (MIMO) channel. All users' data streams are decoded successively at the receiving base station using zero-forcing decision feedback equalization (ZF-DFE). We target the joint optimization of a decoding order and linear precoders for all users based on long-term channel information. For a class of general MIMO channel models, including the separable-correlation and double-scattering models, we show that the choice of precoder for a certain user does not affect the performance of the others. This leads to a particularly straightforward characterization of general user utility regions as a polyblock, or a convex polytope if time-sharing is allowed. We formulate the decoding-ordering problem under transmit-correlated Rayleigh fading as a linear assignment problem, enabling the use of existing efficient algorithms. Combining decoding ordering with single-user precoder optimization by means of alternating optimization, we propose an efficient iterative scheme that is verified numerically to converge fast and perform close to optimally, successfully reaping the benefits of both precoding and ordering in the MIMO uplink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.