Abstract
In prediction of a protein main-chain structure into which a query sequence of amino acids folds, one evaluates the relative stability of a candidate structure against reference structures. We developed a statistical theory for calculating the energy distribution over a main-chain structure ensemble, only with an amino acid composition given as a single argument. Then, we obtained a statistical formulae of the ensemble mean 〈E〉 and ensemble variance V[E] of the reference structural energies, as explicit functions of the amino acid composition. The mean 〈E〉 and the variance V[E] calculated from the formulae were well or roughly consistent with those resulting from a gapless threading simulation. We can use the formulae not only to perform the high-through-put screening of sequences in the inverse folding problem, but also to handle the problem analytically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.