Abstract
Abstract This paper presents a statistical ice event forecast model for the Arctic based on Fourier transforms and a mathematical filter. The results indicate that this model compares very well with both a multiple regression model and a human-made forecast. There seems to be a direct link between the period associated with the dominant spectral peak of the Fourier transform and the ease with which the date of events, such as fractures, bergy water, or open water, can be forecast. While useful for the normal timing of events, at this time, none of the current forecast models can predict events that occur before or beyond the usual or historical dates, which poses a forecast problem in the Arctic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.