Abstract

The likelihood ratio is used for measuring the strength of statistical evidence. The probability of observing strong misleading evidence along with that of observing weak evidence evaluate the performance of this measure. When the corresponding likelihood function is expressed in terms of a parametric statistical model that fails, the likelihood ratio retains its evidential value if the likelihood function is robust [Royall, R., Tsou, T.S., 2003. Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions. J. Roy. Statist. Soc. Ser. B 65, 391–404]. In this paper, we extend the theory of Royall and Tsou [2003. Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions. J. Roy. Statist. Soc., Ser. B 65, 391–404] to the case when the assumed working model is a characteristic model for two-way contingency tables (the model of independence, association and correlation models). We observe that association and correlation models are not equivalent in terms of statistical evidence. The association models are bounded by the maximum of the bump function while the correlation models are not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.