Abstract

BackgroundCells progressing from an early state to a developed state give rise to lineages in cell differentiation. Knowledge of these lineages is central to developmental biology. Each biological lineage corresponds to a trajectory in a dynamical system. Emerging single-cell technologies such as single-cell RNA sequencing can capture molecular abundance in diverse cell types in a developing tissue. Many computational methods have been developed to infer trajectories from single-cell data. However, to our knowledge, none of the existing methods address the problem of determining the existence of a trajectory in observed data before attempting trajectory inference.ResultsWe introduce a method to identify the existence of a trajectory using three graph-based statistics. A permutation test is utilized to calculate the empirical distribution of the test statistic under the null hypothesis that a trajectory does not exist. Finally, a p-value is calculated to quantify the statistical significance for the presence of trajectory in the data.ConclusionsOur work contributes new statistics to assess the level of uncertainty in trajectory inference to increase the understanding of biological system dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.