Abstract

The four tectonic discrimination diagrams of Pearce et al. [Journal of Petrology, v. 25, p. 956–983] for granitic rocks were first evaluated using the literature cited by these authors as well as from our new database. The first diagram (Y−Nb) cannot discriminate volcanic-arc and collision settings. Both Y−Nb and Yb−Ta diagrams have an overlapping field for within-plate and ocean-ridge granitoids. The remaining two diagrams (Y + Nb−Rb and Yb + Ta−Rb) use a mobile element (Rb) in their y-axis. Although these diagrams successfully discriminate volcanic-arc and within-plate granites, they perform less well for collision tectonics. Besides, felsic or acid rocks are scarce in ocean-ridge settings, which limits the usefulness of these diagrams for this geological environment. Therefore, using an extensive database, we proposed a set of five new discriminant-function-based multi-dimensional diagrams for acid magmas from four tectonic settings (island arc, continental arc, continental rift, and collision). The very similar tectonic settings of island and continental arcs are discriminated for the first time. These diagrams are based on correct statistical treatment of compositional data, because they use natural logarithm transformation of major-element ratios and linear discriminant analysis (LDA). The use of discordant outlier-free samples prior to LDA improved the success rates by about 3–5%. Success rates of these diagrams as inferred from a testing set were between 76% and 88% for island arc, 60% and 92% for continental arc, and 72% and 84% for both continental rift and collision settings. Finally, application of these new diagrams to case studies not compiled in our initial database used for constructing these diagrams provided the following results: a collision setting for the Himalayas at about 30 Ma; an island arc setting for Quaternary acid rocks from geothermal boreholes in El Salvador; an island- or continental-arc setting for northern Italy at 35–52 Ma; a continental-arc setting for the Italy–Austria border at about 30 Ma; either a rift or a collision setting for northern Nigeria at about 164 Ma; a collision setting for central Nigeria at about 144 Ma and for the Cretaceous Masirah ophiolites of Oman; and an island arc setting for the Cretaceous Semail ophiolites of Oman. In spite of the relative mobility of major elements, these applications suggest utility of the new discrimination diagrams for all four tectonic settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call