Abstract

This paper is built upon the assumption that in electrical impedance tomography, vectors of voltages and currents are linearly dependent through a resistance matrix. This linear relationship was confirmed experimentally and may be derived analytically under certain assumptions regarding electrodes (Isaacson, 1991). Given measurement data consisting of voltages and currents, we treat this relationship as a linear statistical model. Thus, our goal is not to reconstruct the image but directly estimate its electromagnetic properties reflected in the resistance and/or conductance matrix using electrical impedance tomography (EIT) measurements of voltages and currents on the periphery of the body. Since no inverse problem is involved the algorithm for estimation merely reduces to one matrix inversion. We estimate the impedance resistance matrix using well established statistical inference techniques for linear regression models. We provide a comprehensive treatment for a two-dimensional homogeneous body of a circular shape, by which many concepts of electrical impedance tomography, such as width of electrodes, the difference between voltage-current and current-voltage systems are illustrated. Our theory may be applied to various tests including EIT hardware calibration and whether the medium is homogeneous. These tests are illustrated on phantom agar data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call