Abstract
We develop a multi-period stochastic optimization framework for identifying operating reserve requirements in power systems with significant penetration of renewable energy resources. Our model captures different types of operating reserves, uncertainty in renewable energy generation and demand, and differences in generator operation time scales. Along with planning for reserve capacity, our model is designed to provide recommendations about base-load generation in a non-anticipative manner, while power network and reserve utilization decisions are made in an adaptive manner. We propose a rolling horizon framework with look-ahead approximation in which the optimization problem can be written as a two-stage stochastic linear program (2-SLP) in each time period. Our 2-SLPs are solved using a sequential sampling method, stochastic decomposition, which has been shown to be effective for power system optimization. Further, as market operations impose strict time requirements for providing dispatch decisions, we propose a warm-starting mechanism to speed up this algorithm. Our experimental results, based on IEEE test systems, establish the value of our stochastic approach when compared both to deterministic rules from the literature and to current practice. The resulting computational improvements demonstrate the applicability of our approach to real power systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.