Abstract
High-resolution surface air temperature data are critical to regional climate modeling in terms of energy balance, urban climate change, and so on. This study demonstrates the feasibility of using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) to estimate air temperature at a high resolution over the Yangtze River Delta region, China. It is found that daytime LST is highly correlated with maximum air temperature, and the linear regression coefficients vary with the type of land surface. The air temperature at a resolution of 1 km is estimated from the MODIS LST with linear regression models. The estimated air temperature shows a clear spatial structure of urban heat islands. Spatial patterns of LST and air temperature differences are detected, indicating maximum differences over urban and forest regions during summer. Validations are performed with independent data samples, demonstrating that the mean absolute error of the estimated air temperature is approximately 2.5°C, and the uncertainty is about 3.1°C, if using all valid LST data. The error is reduced by 0.4°C (15%) if using best-quality LST with errors of less than 1 K. The estimated high-resolution air temperature data have great potential to be used in validating high-resolution climate models and other regional applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.