Abstract

Methods of quantum chemistry are instrumental in understanding molecular structures and properties. However, the results demonstrate significant variability, which is difficult to predict and rationalize. The fundamental question is whether some molecular systems exhibit properties invariant with respect to the computational method. The idea explored here is that collective properties of statistical ensembles should be more robust than characteristics of individual molecules and their arbitrary sets. This effect is demonstrated for the complete set of hydrogen-bond topologies of the dodecahedral water cluster (H2 O)20 . Non-Gaussian energy distributions produced by various methods have the same functional form despite strong differences in mean values and standard deviations. The conclusion is tested on methods of different complexity and origin employing a number of criteria. A linear mapping between the energies produced by different methods is discussed. The significance of the results is in establishing a collective equivalence property of quantum chemical methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.