Abstract

We explain the emergence of organised structures in two-dimensional turbulent flows by a theory of equilibrium statistical mechanics. This theory takes into account all the known constants of the motion for the Euler equations. The microscopic states are all the possible vorticity fields, while a macroscopic state is defined as a probability disruption of vorticity at each point of the domain, which describes in a statistical sense the fine-scale vorticity fluctuations. The organised structure appears as a state of maximal entropy, with the constraints of all the constants of the motion. The vorticity field obtained as the local average of this optimal macrostate is a steady solution of the Euler equation. The variational problem provides an explicit relationship between stream function and vorticity, which characterises this steady state. Inertial structures in geophysical fluid dynamics can be predicted, using a generalisation of the theory to potential vorticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.