Abstract

Drop-carrier particles (DCPs) are solid microparticles designed to capture uniform microscale drops of a target solution without using costly microfluidic equipment and techniques. DCPs are useful for automated and high-throughput biological assays and reactions, as well as single-cell analyses. Surface energy minimization provides a theoretical prediction for the volume distribution in pairwise droplet splitting, showing good agreement with macroscale experiments. We develop a probabilistic pairwise interaction model for a system of such DCPs exchanging fluid volume to minimize surface energy. This leads to a theory for the number of pairwise interactions of DCPs needed to reach a uniform volume distribution. Heterogeneous mixtures of DCPs with different sized particles require fewer interactions to reach a minimum energy distribution for the system. We optimize the DCP geometry for minimal required target solution and uniformity in droplet volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.