Abstract

Statistical energy analysis is a technique ideally suited for the study of sound and vibration transmission through complex structures, but is unreliable at low frequencies due to the statistical uncertainties that occur when there are few resonant modes in each of the elements or subsystems. Experimental work has shown that this uncertainty is related to the mobility of the receiving subsystem, which enabled semi-empirical expressions to be derived for the upper and lower limits to the coupling loss factor. Finite element models do not suffer from these limitations at low frequencies and can be used to model such systems "exactly". A finite element model was therefore used to carry out "numerical experiments" to show in more detail the relationship between the properties of subsystems and the coupling between them. It is found that the semi-empirical expressions previously developed give very good agreement with the numerical results of the finite element model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.