Abstract
Finite element methods, experimental statistical energy analysis (ESEA) and Monte Carlo methods have been used to determine coupling loss factors for use in statistical energy analysis (SEA). The aim was to use the concept of an ESEA ensemble to facilitate the use of SEA with plate subsystems that have low modal density and low modal overlap. An advantage of the ESEA ensemble approach was that when the matrix inversion failed for a single deterministic analysis, the majority of ensemble members did not encounter problems. Failure of the matrix inversion for a single deterministic analysis may incorrectly lead to the conclusion that SEA is not appropriate. However, when the majority of the ESEA ensemble members have positive coupling loss factors, this provides sufficient motivation to attempt an SEA model. The ensembles were created using the normal distribution to introduce variation into the plate dimensions. For plate systems with low modal density and low modal overlap, it was found that the resulting probability distribution function for the linear coupling loss factor could be considered as lognormal. This allowed statistical confidence limits to be determined for the coupling loss factor. The SEA permutation method was then used to calculate the expected range of the response using these confidence limits in the SEA matrix solution. For plate systems with low modal density and low modal overlap, relatively small variation/uncertainty in the physical properties caused large differences in the coupling parameters. For this reason, a single deterministic analysis is of minimal use. Therefore, the ability to determine both the ensemble average and the expected range with SEA is crucial in allowing a robust assessment of vibration transmission between plate systems with low modal density and low modal overlap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.